direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×D4.D5, C20.29C24, Dic10⋊7C23, C5⋊2C8⋊9C23, C10⋊3(C2×SD16), C5⋊3(C22×SD16), (C2×C10)⋊12SD16, C20.250(C2×D4), (C2×C20).208D4, (C22×D4).9D5, C4.29(C23×D5), (C2×D4).227D10, (C5×D4).21C23, D4.21(C22×D5), (C2×C20).538C23, C10.138(C22×D4), (C22×C4).376D10, (C22×C10).208D4, (C22×Dic10)⋊19C2, (C2×Dic10)⋊66C22, (D4×C10).267C22, C23.105(C5⋊D4), (C22×C20).271C22, (D4×C2×C10).6C2, C4.22(C2×C5⋊D4), (C2×C5⋊2C8)⋊39C22, (C22×C5⋊2C8)⋊12C2, (C2×C10).578(C2×D4), C2.11(C22×C5⋊D4), (C2×C4).152(C5⋊D4), (C2×C4).621(C22×D5), C22.107(C2×C5⋊D4), SmallGroup(320,1466)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×D4.D5
G = < a,b,c,d,e,f | a2=b2=c4=d2=e5=1, f2=c2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=fcf-1=c-1, ce=ec, de=ed, fdf-1=cd, fef-1=e-1 >
Subgroups: 862 in 298 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C10, C10, C10, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic5, C20, C20, C2×C10, C2×C10, C22×C8, C2×SD16, C22×D4, C22×Q8, C5⋊2C8, Dic10, Dic10, C2×Dic5, C2×C20, C5×D4, C5×D4, C22×C10, C22×C10, C22×SD16, C2×C5⋊2C8, D4.D5, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, D4×C10, C23×C10, C22×C5⋊2C8, C2×D4.D5, C22×Dic10, D4×C2×C10, C22×D4.D5
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C24, D10, C2×SD16, C22×D4, C5⋊D4, C22×D5, C22×SD16, D4.D5, C2×C5⋊D4, C23×D5, C2×D4.D5, C22×C5⋊D4, C22×D4.D5
(1 66)(2 67)(3 68)(4 69)(5 70)(6 61)(7 62)(8 63)(9 64)(10 65)(11 71)(12 72)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 46)(22 47)(23 48)(24 49)(25 50)(26 41)(27 42)(28 43)(29 44)(30 45)(31 51)(32 52)(33 53)(34 54)(35 55)(36 56)(37 57)(38 58)(39 59)(40 60)(81 146)(82 147)(83 148)(84 149)(85 150)(86 141)(87 142)(88 143)(89 144)(90 145)(91 151)(92 152)(93 153)(94 154)(95 155)(96 156)(97 157)(98 158)(99 159)(100 160)(101 126)(102 127)(103 128)(104 129)(105 130)(106 121)(107 122)(108 123)(109 124)(110 125)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 116 106 111)(102 117 107 112)(103 118 108 113)(104 119 109 114)(105 120 110 115)(121 131 126 136)(122 132 127 137)(123 133 128 138)(124 134 129 139)(125 135 130 140)(141 156 146 151)(142 157 147 152)(143 158 148 153)(144 159 149 154)(145 160 150 155)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)(81 86)(82 87)(83 88)(84 89)(85 90)(101 106)(102 107)(103 108)(104 109)(105 110)(121 126)(122 127)(123 128)(124 129)(125 130)(141 146)(142 147)(143 148)(144 149)(145 150)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 148 6 143)(2 147 7 142)(3 146 8 141)(4 150 9 145)(5 149 10 144)(11 153 16 158)(12 152 17 157)(13 151 18 156)(14 155 19 160)(15 154 20 159)(21 128 26 123)(22 127 27 122)(23 126 28 121)(24 130 29 125)(25 129 30 124)(31 133 36 138)(32 132 37 137)(33 131 38 136)(34 135 39 140)(35 134 40 139)(41 108 46 103)(42 107 47 102)(43 106 48 101)(44 110 49 105)(45 109 50 104)(51 113 56 118)(52 112 57 117)(53 111 58 116)(54 115 59 120)(55 114 60 119)(61 88 66 83)(62 87 67 82)(63 86 68 81)(64 90 69 85)(65 89 70 84)(71 93 76 98)(72 92 77 97)(73 91 78 96)(74 95 79 100)(75 94 80 99)
G:=sub<Sym(160)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,61)(7,62)(8,63)(9,64)(10,65)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,46)(22,47)(23,48)(24,49)(25,50)(26,41)(27,42)(28,43)(29,44)(30,45)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(81,146)(82,147)(83,148)(84,149)(85,150)(86,141)(87,142)(88,143)(89,144)(90,145)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,126)(102,127)(103,128)(104,129)(105,130)(106,121)(107,122)(108,123)(109,124)(110,125)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,116,106,111)(102,117,107,112)(103,118,108,113)(104,119,109,114)(105,120,110,115)(121,131,126,136)(122,132,127,137)(123,133,128,138)(124,134,129,139)(125,135,130,140)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(101,106)(102,107)(103,108)(104,109)(105,110)(121,126)(122,127)(123,128)(124,129)(125,130)(141,146)(142,147)(143,148)(144,149)(145,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,148,6,143)(2,147,7,142)(3,146,8,141)(4,150,9,145)(5,149,10,144)(11,153,16,158)(12,152,17,157)(13,151,18,156)(14,155,19,160)(15,154,20,159)(21,128,26,123)(22,127,27,122)(23,126,28,121)(24,130,29,125)(25,129,30,124)(31,133,36,138)(32,132,37,137)(33,131,38,136)(34,135,39,140)(35,134,40,139)(41,108,46,103)(42,107,47,102)(43,106,48,101)(44,110,49,105)(45,109,50,104)(51,113,56,118)(52,112,57,117)(53,111,58,116)(54,115,59,120)(55,114,60,119)(61,88,66,83)(62,87,67,82)(63,86,68,81)(64,90,69,85)(65,89,70,84)(71,93,76,98)(72,92,77,97)(73,91,78,96)(74,95,79,100)(75,94,80,99)>;
G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,61)(7,62)(8,63)(9,64)(10,65)(11,71)(12,72)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,46)(22,47)(23,48)(24,49)(25,50)(26,41)(27,42)(28,43)(29,44)(30,45)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(81,146)(82,147)(83,148)(84,149)(85,150)(86,141)(87,142)(88,143)(89,144)(90,145)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,126)(102,127)(103,128)(104,129)(105,130)(106,121)(107,122)(108,123)(109,124)(110,125)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,116,106,111)(102,117,107,112)(103,118,108,113)(104,119,109,114)(105,120,110,115)(121,131,126,136)(122,132,127,137)(123,133,128,138)(124,134,129,139)(125,135,130,140)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(101,106)(102,107)(103,108)(104,109)(105,110)(121,126)(122,127)(123,128)(124,129)(125,130)(141,146)(142,147)(143,148)(144,149)(145,150), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,148,6,143)(2,147,7,142)(3,146,8,141)(4,150,9,145)(5,149,10,144)(11,153,16,158)(12,152,17,157)(13,151,18,156)(14,155,19,160)(15,154,20,159)(21,128,26,123)(22,127,27,122)(23,126,28,121)(24,130,29,125)(25,129,30,124)(31,133,36,138)(32,132,37,137)(33,131,38,136)(34,135,39,140)(35,134,40,139)(41,108,46,103)(42,107,47,102)(43,106,48,101)(44,110,49,105)(45,109,50,104)(51,113,56,118)(52,112,57,117)(53,111,58,116)(54,115,59,120)(55,114,60,119)(61,88,66,83)(62,87,67,82)(63,86,68,81)(64,90,69,85)(65,89,70,84)(71,93,76,98)(72,92,77,97)(73,91,78,96)(74,95,79,100)(75,94,80,99) );
G=PermutationGroup([[(1,66),(2,67),(3,68),(4,69),(5,70),(6,61),(7,62),(8,63),(9,64),(10,65),(11,71),(12,72),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,46),(22,47),(23,48),(24,49),(25,50),(26,41),(27,42),(28,43),(29,44),(30,45),(31,51),(32,52),(33,53),(34,54),(35,55),(36,56),(37,57),(38,58),(39,59),(40,60),(81,146),(82,147),(83,148),(84,149),(85,150),(86,141),(87,142),(88,143),(89,144),(90,145),(91,151),(92,152),(93,153),(94,154),(95,155),(96,156),(97,157),(98,158),(99,159),(100,160),(101,126),(102,127),(103,128),(104,129),(105,130),(106,121),(107,122),(108,123),(109,124),(110,125),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,116,106,111),(102,117,107,112),(103,118,108,113),(104,119,109,114),(105,120,110,115),(121,131,126,136),(122,132,127,137),(123,133,128,138),(124,134,129,139),(125,135,130,140),(141,156,146,151),(142,157,147,152),(143,158,148,153),(144,159,149,154),(145,160,150,155)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75),(81,86),(82,87),(83,88),(84,89),(85,90),(101,106),(102,107),(103,108),(104,109),(105,110),(121,126),(122,127),(123,128),(124,129),(125,130),(141,146),(142,147),(143,148),(144,149),(145,150)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,148,6,143),(2,147,7,142),(3,146,8,141),(4,150,9,145),(5,149,10,144),(11,153,16,158),(12,152,17,157),(13,151,18,156),(14,155,19,160),(15,154,20,159),(21,128,26,123),(22,127,27,122),(23,126,28,121),(24,130,29,125),(25,129,30,124),(31,133,36,138),(32,132,37,137),(33,131,38,136),(34,135,39,140),(35,134,40,139),(41,108,46,103),(42,107,47,102),(43,106,48,101),(44,110,49,105),(45,109,50,104),(51,113,56,118),(52,112,57,117),(53,111,58,116),(54,115,59,120),(55,114,60,119),(61,88,66,83),(62,87,67,82),(63,86,68,81),(64,90,69,85),(65,89,70,84),(71,93,76,98),(72,92,77,97),(73,91,78,96),(74,95,79,100),(75,94,80,99)]])
68 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | SD16 | D10 | D10 | C5⋊D4 | C5⋊D4 | D4.D5 |
kernel | C22×D4.D5 | C22×C5⋊2C8 | C2×D4.D5 | C22×Dic10 | D4×C2×C10 | C2×C20 | C22×C10 | C22×D4 | C2×C10 | C22×C4 | C2×D4 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 12 | 1 | 1 | 3 | 1 | 2 | 8 | 2 | 12 | 12 | 4 | 8 |
Matrix representation of C22×D4.D5 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 4 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 37 | 16 |
40 | 0 | 0 | 0 | 0 |
0 | 26 | 15 | 0 | 0 |
0 | 15 | 15 | 0 | 0 |
0 | 0 | 0 | 12 | 6 |
0 | 0 | 0 | 24 | 29 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,40,4,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,18,37,0,0,0,0,16],[40,0,0,0,0,0,26,15,0,0,0,15,15,0,0,0,0,0,12,24,0,0,0,6,29] >;
C22×D4.D5 in GAP, Magma, Sage, TeX
C_2^2\times D_4.D_5
% in TeX
G:=Group("C2^2xD4.D5");
// GroupNames label
G:=SmallGroup(320,1466);
// by ID
G=gap.SmallGroup(320,1466);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,675,1684,235,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=d^2=e^5=1,f^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=f*c*f^-1=c^-1,c*e=e*c,d*e=e*d,f*d*f^-1=c*d,f*e*f^-1=e^-1>;
// generators/relations